Preferred Device

Small Signal MOSFET 250 mAmps, 200 Volts, **Logic Level**

N-Channel TO-92

This MOSFET is designed for high voltage, high speed switching applications such as line drivers, relay drivers, CMOS logic, microprocessor or TTL to high voltage interface and high voltage display drivers.

Features

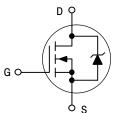
- Low Drive Requirement, $V_{GS} = 3.0 \text{ V max}$
- Inherent Current Sharing Capability Permits Easy Paralleling of many Devices
- AEC Qualified
- PPAP Capable
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain - Source Voltage	V _{DSS}	200	Vdc
Gate-Source Voltage	V _{GS}	±20	Vdc
Drain Current Continuous (Note 1) Pulsed (Note 2)	I _D I _{DM}	250 500	mAdc
Total Power Dissipation @ T _A = 25°C Derate above T _A = 25°C	P _D	350 6.4	mW mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

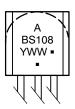
- 1. The Power Dissipation of the package may result in a lower continuous drain
- 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.


ON Semiconductor®

http://onsemi.com

250 mAMPS 200 VOLTS

 $R_{DS(on)} = 8 \Omega$



MARKING DIAGRAM

TO-92 CASE 29-11

BS108 = Device Code

= Assembly Location

= Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
BS108	TO-92	1000 Units/Box
BS108G	TO-92 (Pb-Free)	1000 Units/Box
BS108ZL1	TO-92	2000/Ammo Pack
BS108ZL1G	TO-92 (Pb-Free)	2000/Ammo Pack

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

1

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $(V_{GS} = 0, I_D = 10 \mu A)$	V _{(BR)DS}	200	-	-	Vdc
Zero Gate Voltage Drain Current (V _{DSS} = 130 Vdc, V _{GS} = 0)	I _{DSS}	_	-	30	nAdc
Gate-Body Leakage Current (V _{GS} = 15 Vdc, V _{DS} = 0)	I _{GSSF}	_	-	10	nAdc
ON CHARACTERISTICS (Note 3)					
Gate Threshold Voltage (I _D = 1.0 mA, V _{DS} = V _{GS})	V _{GS(th)}	0.5	-	1.5	Vdc
Static Drain-to-Source On-Resistance $(V_{GS} = 2.0 \text{ Vdc}, I_D = 50 \text{ mA})$ $(V_{GS} = 2.8 \text{ Vdc}, I_D = 100 \text{ mA})$	r _{DS(on)}	-	- -	10 8.0	Ω
Drain Cutoff Current (V _{GS} = 0.2 V, V _{DS} = 70 V)	I _{DSX}	_	-	25	μΑ
Forward Transconductance (I _D = 120 mA, V _{DS} = 20 V)	9FS	_	0.33	-	Mhos
DYNAMIC CHARACTERISTICS	•	•	•	•	
Input Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	-	150	pF
Output Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	C _{oss}	_	-	30	pF
Reverse Transfer Capacitance (V _{DS} = 25 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	-	10	pF
SWITCHING CHARACTERISTICS	•	•			
Turn-On Time (See Figure 1)	t _{d(on)}	-	_	15	ns
Turn-Off Time (See Figure 1)	t _{d(off)}	-	-	15	ns

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle = 2.0%.

RESISTIVE SWITCHING

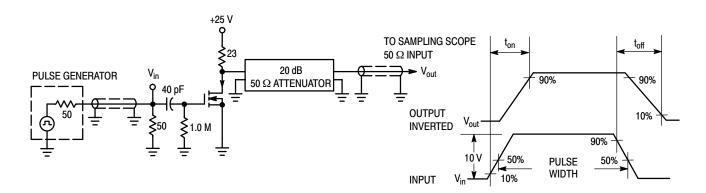
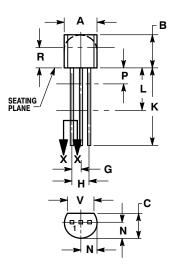



Figure 1. Switching Test Circuit

Figure 2. Switching Waveforms

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

STRAIGHT LEAD **BULK PACK**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
P		0.100		2.54	
R	0.115		2.93	-	
٧	0.135		3.43		

STYLE 30:

PIN 1. DRAIN

GATE

3. SOURCE

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative